REGRESSION EQUATIONS ON THE TI-83

1. Clear all functions from $Y=$ screen.
2. If you wish to get r values later, turn on diagnostics as follows.

- 2nd [CATALOG] ?? until you get to ©i agnosticon, then press ENTER ENTER.
- When you enter the [CATALOG], the calculator is automatically in ALPHA MODE . Pressing the key with D above it will cause the catalog listing to jump to the first entry beginning with that letter.

3. Turn on STAT PLOT.

- 2nd STAT PLOTSTAT PLOTS 1:PIot1... Off ENTER 目On ENTER.
- ? Type: highlight first graphing option ENTER.
- ? XI ist: 2ndLI ENTER.
-? YI ist: 2ndL2 ENTER.
- ? Mark: highlight desired option ENTER 2nd QUI T.
- When you are finished with the statistics applications, you will need to turn off STAT PLOT: 2nd STAT PLOT STAT PLOTS 4: PIots Off ENTER. The STAT PLOT can also be turned on and off in the $Y=$ screen.

4. Enter data points.

- STAT 1: Edit ENTER.
- You can clear old data as follows: \exists L1 CLEAR ENTER.

Enter the x-values in L1 and the y-values in L2. Press ENTER after each entry. (You cannot use 0 as an x-value if you are going to do logarithmic regression. In that case, enter . 000001 instead of 0 for x.) Enter each pair side-by-side.

- 2nd [QUI T] after all data is entered.

Example: Data pairs: 1

1	113
2	114
3	119
4	122
5	129

5. Draw scatter plot.

- ZOOM 9: ZoomStat ENTER.
- 2nd [QUIT].

6. Calculate and store linear regression equation.

- STAT \triangle CALC 4: Li nReg (ax+b)

ENTER 2nd [L1] \square 2nd [L2] VARS \square Y-VARS
 1: Function ENTERFUNCTION 1: Y ENTER.

- The default lists are L1 and L2 and may be omitted.
- The coefficients and r value are displayed on the home screen.

$\begin{aligned} & \text { LinReg } \\ & \exists=3 \times+b \\ & \exists=4 \\ & b=107.4 \\ & r=9.946264775 \\ & r=.97243767 \end{aligned}$

- The regression equation is stored in $\mathrm{Y}_{1}=$.

7. Superimpose regression line on scatterplot.

- ZOOMZOOM 9: ZoomStat ENTER.

8. The correlation coefficient r.

- The correlation coefficient r is a number between -1 and +1 that indicates the closeness of the fit of the regression line. The closer $|r|$ is to 1 , the better the fit. This line is a good fit, but there may be another type of regression that is better.

9. Using the regression equation to predict other y-values.

- Example: To find y when $x=10$: VARS $\triangle Y-V A R S$ 1: Function ENTER FUNCTION 1: Y Y_{1} ENTER $\square \square \square \square$ DENTER
- You could also store 10 as X and then evaluate Y_{1}.
- You could also use the graph and the 2nd CALCCALCULATE 1: val ue option.

10. Clearing an entire list of old data.

- There are several methods for clearing old data, but one of the easiest is: STAT 1: Edit, use the up arrow \otimes highlight the name of the list you wish to clear, then press CLEAR ENTER

11. Calculating other types of regression models.

- Quadratic model:
$y=.714 x^{2}-.286 x+112.4$
(rounded to 3 decimals)

- Cubic model:
$y=.714 x^{2}-.286 x+112.4$ Isn't that strange!!

- Quartic model:
$\begin{aligned} y= & .5 x^{4}-6 x^{3}+25.5 x^{2} \\ & -41 x+134\end{aligned}$

- Natural logarithmic model:

$$
y=9.206 \ln x+110.585
$$

- Exponential model:

$$
y=107.933^{*}\left(1.034^{x}\right)
$$

- Power regression model:

$$
y=110.799^{*} \times 077
$$

Regression Equations on the TI-83
Judy Ahrens
Pellissippi State Technical Community College January 30, 1999

