Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Academic Standards Covered in this Chapter:

FM.N.1: Use networks, traceable paths, tree diagrams, Venn diagrams, and other pictorial representations to find the number of outcomes in a problem situation

FM.N.2: $\underline{\text { Optimize networks in different ways and in different contexts by finding minimal spanning trees, shortest }}$ paths, and Hamiltonian paths including real-world problems.

FM.N.4: Construct and interpret directed and undirected graphs, decision trees, networks, and flow charts that model real-world contexts and problems.

FM.N.6: Construct vertex-edge graph models involving relationships among a finite number of elements. Describe a vertex-edge graph using an adjacency matrix. Use vertex-edge graph models to solve problems in a variety of real-world settings.

The Beginning of Graph Theory

The Scene: Medieval Town of Köningsberg, Eastern Europe, 1700's
The Puzzle: Can you walk around town in such a way that you cross each bridge once and only once?
The Result: An intrigued Euler's solution lays the foundation for a new branch of mathematics: Graph Theory

5.1 Euler Circuit Problems

Routing Problems: finding ways toroute the delivery of goods or services to an assortment of destinations. An Euler circuit problem is a specific type of routing problem where every single street (or bridges, highways, etc) MUST BE COVERED by the route. This is called the exhaustion requirement.

Common Exhaustive Routing Problems: mail delivery, police patrols, garbage collecting, Street sweeping, snow removal, parade routes, tour buses, electric meter reading, etc.

Examples:

The Sunnyside Neighborhood (pg 169)

The Security Guard: A private security guard is hired to make an exhaustive patrol on foot. He parks his car at the corner across from the school (S). Can he start at S and walk every block of the neighborhood JUST ONCE? If not, what is the OPTIMAL trip? How many streets will he have to walk twice?

The Mail Carrier: The mail carrier starts and ends at the post office (P). She must deliver mail on every street there are houses. If there are houses on both sides of the street, she must walk that block twice. She would like to cover the neighborhood with the least amount of walking.

Try and trace this with your pencil. What do you think?
Very quickly
you run into "overlap" and deadhead

5.2 What is a Graph?

GRAPH

A graph is a structure consisting of a set of objects (the vertex set) and a list describing how pairs of objects are related (the edge set). Relations among objects include the possibility of an object being related to itself (a loop) as well as multiple relations between the same pair of objects (multiple edges). In plain English: Lines connecting Points

The graphs we discuss in this chapter have no connection to the graphs of functions you've discussed in Algebra.

Vertices: The points on the graph

Edges: The lines on the graph.
The edge connecting B and A can be called

Loop: An edge connecting a vertex to itself. Example: \qquad

Multiple Edge: Two edges connecting the same pair of vertices
Example: \qquad and $C D$

Isolated Vertices: Vertices not connected by any edges. Example: F

Vertex Set: A, B, C, D, E, F
Ede Set: $A B, A D, B B, B C, C D, C D, D E, B E$

Why are graphs useful?
They help tell a story in a simple picture.

Jughead Moose Ginger Reggie
Who has most friends?
Who has least friends?

Euler's Bridge Problem Veronica

Easier to look at and study

A graph is just a VISUAL REPRESENTATION of a set of objects and the relationships between those objects.

You have a lot of freedom in how you draw a graph model!

Two graphs are ISOMORPHIC same vertices and exactly the same edges.

- A

5.3 Graph Concepts and Terminology

Adjacent
Two vertices are adjacent if they are joined by an edge.
Ex: \qquad A and \qquad B are adjacent.
\qquad A and \qquad E are not adjacent.
\qquad is adjacent to itself.

Two edges are adjacent if they share a common vertex.

$$
\text { Ex. } \overline{A B} \text { and } B F \text { are adjacent. }
$$

\qquad
$A B$ and \qquad FE are not adjacent.

Degree $\operatorname{deg}(\mathrm{V})=\#$
The number of edges meeting at that vertex.

$$
\operatorname{deg}(A)=3 \quad \operatorname{deg}(B)=5 \quad \operatorname{deg}(E)=4 \quad \text { (loops count as } 2 \text { toward the degree) }
$$

Vertices whose degree is odd: "odd vertices" $\rightarrow A, B, C, F, G, H$
Vertices whose degree is even: "even vertices" $\rightarrow E, D$
Circuit A Closed trip along the edges of the graph. Path: An Open trip along the edges of the graph.
A circuit starts and ends in the same place.

Important points about circuits and paths:

1. No EDGE can be covered twice.
2. You can use a vertex as many times as you wish.
3. Length $=$ the number of edges traveled

Examples of circuits:
Find a circuit through the point B

Examples of paths:
Find a path from G to E

Connected Think "in YNP
You can get to any vertex from any vertex along a path.

Bridge: An edge that, when removed, causes a connected graph to become disconnected.

In the picture above there are three bridges:

$$
B F F G, F H
$$

Disconnected Think "in pieces"....
Graph is made of several components.

Examples:

1. For the graph shown, list the degree of each vertex

2. Consider the graph with Vertices: A, B, C, D, E,

$$
\text { Edges: } A B, A C, A D, B E, B C, C D, E E
$$

Draw two different pictures of the graph. ANSWERS VARYV

3. Consider the graph with

Vertices: A,B,C,D,E
Edges: AD, AE, BC, BD, DD, DE

a) A, B, E, D
b) $\operatorname{deg}(D)=5$
c) $\operatorname{deg}_{2}(A)+\operatorname{deg}_{2}(B)+\operatorname{deg}_{1}(C)+\operatorname{deg}_{5}(D)+\operatorname{deg}_{2}(E)=12$
4.

a) Find a path of length 4 from A to E $A B C D E$
c) Find a path from A to E that goes through C twice ABCCDE
e) How many paths are there from A to D ?

g) How many paths are there from A to G ?

Use multiplication rule

b) Find a circuit through G
(answers vary) GFHG or GHEFG
d) Find a path of length 7 from F to B FGHEDCCB or FHGFEDCB
f) How many paths are there from E to G ? EFF, EFHG EH, EHF
h) Are there any bridges in this graph?
$E D$ and $A B$

5. Supplement - Adjacency Matrix

There are several ways to describe a graph.

With a diagram:

With a list of vertices/edges:
Vertices $=\{A, B, C, D, E\}$
Edges $=\{A C, C B, C E, C D, B D, B E\}$.

With an Adjacency Matrix:
$\quad A$
A
B
C
C
D
$E$$\left[\begin{array}{lllll}0 & 0 & C & D & E \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0\end{array}\right]$

How to create an Adjacency Matrix:

1. Create an $n \times n$ square matrix with a row and column for each vertex of your graph.
2. If a vertex is adjacent to another vertex, put a " 1 " in the corresponding position. If a vertex is not adjacent, put a " 0 " in the corresponding position.

Example 1: Make an adjacency matrix for the following graphs
a.

* Note: It's good form to put your variables in alpha order
* Anon-zero \# on main
diagonal indicates "loop"
b.

c.

$$
\begin{aligned}
& V=\{E, F, G, J, K, M\} \\
& E=\{E F, K M, F G, I M, E G, K I] .
\end{aligned}
$$

	E	F	G	J	K	M
E	0	1	1	0	0	0
F	1	0	1	0	0	0
G	1	1	0	0	0	0
J	0	0	0	0	1	1
K	0	0	0	1	0	1
M	0	0	0	1	1	0

d.

$$
\text { 1. } \begin{aligned}
V & =\{W, X, Y, Z\} \\
E & =\{\underline{W X}, \underline{X Z}, \underline{Y Z}, \underline{X Y}, \underline{W Z}, \underline{W Y} .
\end{aligned}
$$

$\left.\begin{array}{|c|c|c|c|c|}\hline & w & x & y & z \\ \hline w & 0 & 1 & 1 & 1 \\ \hline x & 1 & 0 & 1 & 1 \\ \hline y & 1 & 1 & 0 & 1 \\ \hline z & 1 & 1 & 1 & 0\end{array}\right]$

Example 2: Draw the graph given its adjacency matrix

More Graph Terminology

Simple Graph: No multiple Edges, No loops
Multigraph: Multiple edges, no loopsLoops show up on main diagonal
Pseudograph: Loops, possibly multiple edges also=Multiedge
Example 3: Which type of graph is represented by the following adjacency matrices? \# >1
a) $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$

100 P
No multi.edges
Pseudogaph
b)
$\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$

Noloop
No Mut. edge
Simple Graph

Noloop
Multiple edges
Multigraph

5.4 Graph Models

The Goal: Take a real life picture/situation \rightarrow Create a Graph to Model this

The Rules: Only use vertices (dots) and edges (lines)

The Result: The only thing that really matters is the relationship between the vertices and the edges.

Map

Think: What are my vertices? What are my edges?

GRAPH

Graph Model

Sunnyside Neighborhood

MAP

Map

Security Guard: Each block once One pass per
street

Mail carrier: both sides of any street with houses.

Remember: You are only using vertices and edges!
Vertices may represent: land masses, street intersections, or people Edges may represent: bridges, streets, or relationships!

You TRY!

Create a Graph Model

A beautiful river runs through Madison county. There are four islands and 11 bridges joining the islands to both banks of the river (the Right Bank,R, and the Left Bank, L).

Draw a graph model of this Avon, Indiana neighborhood.

5.5 Euler Theorems

The "Big" Questions

1. When can you draw the figure without retracing any edges and'still end up at your starting point?
2. When can you draw the figure without retracing and end up at a point other than the one from which you began?
3. When can you not draw the figure without retracing?

Euler Circuit/Path:

A Circuit/Path that covers EVERY EDGE in the graph once and only once.

> Do you think that these graphs have an Euler Circuit? Try tracing them with your pencil.

Euler studied a lot of graph models and came up with a simple way of determining if a graph had an Euler Circuit, an Euler Path, or Neither.

Remember:
Euler Circuit: Travels every edge exactly once, start/end @ same vertex
Euler Path: Travels every edge exactly once, start/end @ different vertex

To have an Euler Circuit: you must be able to travel IN and OUT of each vertex.

A graph with this vertex would be OK.

EULER'S CIRCUIT THEOREM

- If a graph is connected and every vertex is even, then it has an Euler circuit (at least one, usually more).
- If a graph has any odd vertices, then it does not have an Euler circuit.

A graph with this vertex would NOT!

EULER'S PATH THEOREM

- If a graph is connected and has exactly two odd vertices, then it has an Euler path (at least one, usually more). Any such path must start at one of the odd vertices and end at the other one.
- If a graph has more than two odd vertices, then it cannot have an Euler path.

Examples:

Determine if the graph has an Euler Circuit, an Euler Path, or neither and explain why. You do not have to find an actual path or circuit through the graph

disconnected
4.

Neither

5.

Pleven

Euler Circuit
6.
3.

More Neither

Exactly 2 odd Euler Path

whart thenstis ossuretexe \rightarrow Then you counted wrong.

TABLE 5-1	Euler's Theorems (Summary)
Number of odd vertices	Conclusion
0	G has Euler circuit
2	G has Euler path
$4,6,8, \ldots$	G has neither
$1,3,5, \ldots$	Better go back and double check! This is impossible!

EULER'S SUM OF DEGREES THEOREM

- The sum of the degrees of all the vertices of a graph equals twice the number of edges (and therefore is an even number).
■ A graph always has an even number of odd vertices.

5.6 Fleury's Algorithm

Finding an Euler Path or Euler Circuit

Fleury's Algorithm: Don't cross a bridge to an untraveled part of your graph unless you have no other choice.

Once you cross the bridge from A to B, the only way to get back to A is by recrossing the bridge which you must not do!!!

A

B

Examples:

Does the graph have an Euler Path, Euler Circuit, or Neither? If it has an Euler Path or Euler Circuit, find it!

Steps

1.

Make sure the graph is connected No odd vertices = Euler circuit Two odd vertices $=$ Euler path
2. Start

Euler Circuit - start anywhere
Euler Path - start at an odd vertex
3. If you have a choice, don't choose a bridge. Number your edges as you travel them.
4. When you've traveled every edge exactly once, you're done!
Euler Circuit - end where you started Euler Path - end at the other odd vertex.

2.

Another Method to try:
You will want multiple colored pens/pencils for this.
4.

3.

Euler Circuit Algorithm

1. Pick any vertex, and label it S.
2. Construct a circuit, C, that begins and ends at S.
3. If C is a circuit that includes all edges of the graph, go to step 8.
4. Choose a vertex, V, that is in C and has an edge that is not in C.
5. Construct a circuit C^{\prime} that starts and ends at V using edges not in C.
6. Combine C and C^{\prime} to form a new circuit. Call this new circuit C.
7. Go to step 3.
8. Stop. C is an Euler circuit for the graph.
9.

6.

7.

5.7 Eulerizing Graphs

Remember that we are trying to find OPTIMAL SOLUTIONS to routing problems.

We want 1. an exhaustive route - covers each and every edge in the graph
2. to minimize "deadhead" travel - multiple passes on a single edge is a waste of time/money

OPTIMAL SITUATION:

An Euler Circuit or Path Already Exists

OTHERWISE "EULERIZE" your graph:

Strategically "ADD" edges to your graph.
These represent edges you plan to cross more than once.
These edges should eliminate odd vertices so that your "new" graph has a Euler Circuit or Euler Path.

Consider the following model of a street network.

How many odd vertices are there?
Does an Euler Circuit exist?
No
Strategically add edges to eliminate odd vertices.
You will need AT LEAST \downarrow edges.

You MAY NOT create new edges! You may only DUPLICATE EXISTING EDGES!

Example:

This is OK

Here are a couple of solutions:

This is NOT OK

Adds 7

Ex. 1 Find an optimal eulerization of the following graph.

18odd
 Goal: 9 or more

Ex. 2.
Find an optimal eulerization of the following graph.
Then FIND the Euler Circuit through the graph by labeling the edges 1, 2, 3... etc. as you would travel them.

b)

c.

Example 3: The street network of a city can be modeled with a graph in which the vertices represent the street corners and the edges represent the streets. Suppose you are the city street inspector and it is desirable to minimize time and cost by not inspecting the same street more than once.
a. In this graph of the city, is it possible to begin at the garage (G) and inspect each street only once? Will you be back at the garage at the end of the inspection?
No. No Euler Path or Circuit starting of G
b. Find a rout that inspects all street, repeats the least number of edges possible, and returns to the garage.
c. Suppose it takes you approximately 5 minutes to inspect each street. Approximately how long will it take you to inspect the entire street network?
$18 \times 5=90 \mathrm{M} / \mathrm{N}$
 OR $1 \frac{1}{2} h r s$

NOTE:
When labeling your edges, it is not a bad idea to have a friend try to follow your work.
For example: What is wrong with this problem?

Find the optimal eulerization of the following graph. Then find the Euler circuit by labeling the edges $1,2,3 \ldots$ as you travel them.

