1. Justine is a wedding coordinator. She is selecting the menu options for the reception.

- First, she will give the guests a choice of Salad or Soup for the first course.
- Then, she will allow them to pick from a chicken, steak, or a vegetarian for their main course.
- Finally, she will allow the guests to choose bride's vanilla cake or groom's chocolate cake.

Create a tree diagram showing every plausible dinner a guest could select:

How many outcomes are possible?

Show how you could use the counting principle to determine the number of outcomes.
2. At a New Car Dealership, a particular model comes in 4 different trim levels (CX, DX, EX, and Si). The same model comes in 5 different colors (Night Black, Pearl White, Evening Blue, Sandy Red, and Forest Green). The model of car also has 3 different interior options (Grey Cloth, Tan Cloth, Black Leather). How many different versions of this model can be created from these options?

3. A seven digit telephone number is of the form ABC-DEFG. In one particular state, the digit ' A ' is restricted to any number between 1 and 9 . The digits B and C are restricted to any number between 2 and 9 . The digits $\mathrm{D}, \mathrm{E}, \mathrm{F}$, and G have no restriction. How many seven digit phone numbers are possible with these restrictions?

4. A ten digit telephone number is of the form (XYZ) - ABC -DEFG. In one particular state, there are 4 possible area codes (202, 341, 602, and 581). The digit ' A ' is restricted to a number 2 through 8 . The digits B and C can be any number but they cannot repeat. The digits D, E, F, and G have no restriction. How many seven digit phone numbers are possible with these restrictions?
5. How many area codes of the form ($X Y Z$) are possible if the digit ' X ' and ' Y ' can be any number 1 through 9 and the digit ' Z ' can be any number 2 through 9 ?
6. A seven digit telephone number is of the form ABC-DEFG. In one particular state, the digit ' A ' can be any digit except 0 and 1 . The digits B and C can be any digit from 2-9. The digits D, E, F, and G can be any digit $0-9$ except they can't all be the same (e.g. $0000,1111,2222$, ...etc.). How many seven digit phone numbers are possible with these restrictions?

7. A student number for a high school requires that student identification number consist of 6 characters. The first 4 characters can be any number without restriction. The last 2 characters are letters and cannot repeat. How many student ID's are
 possible?
8. A lock on a fence door has a 3 digit combination. Each digit can be any number between $1-8$. The only restriction is that all 4 characters cannot be the same (e.g. 111, 222, 333, etc.). How many combinations are possible?
9. A suitcase has a lock on it consisting of four numbers. Each number could be any number 0-9. The only restriction is that two numbers in a row cannot be the same (e.g. you couldn't use 3224 because the 2's are adjacent but you could use 3434 since none of the same numbers are adjacent).

